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We calculate the shot-noise power in ballistic graphene using the kinetic equation approach based on the
Keldysh technique. We find that the local energy distribution function obeys Poisson’s equation, indicating a
mapping into a diffusive metal system. We derive the conductance and noise including the long-range Coulomb
interaction to first order. We find that the shot noise increases due to interaction, leading to a frequency
dependence. Furthermore, we find that the Fano factor at degeneracy is 1/3, the same as without the Coulomb
interaction.
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I. INTRODUCTION

Graphene, a two-dimensional honeycomb lattice of car-
bon, is of considerable recent interest. It is now experimen-
tally established1,2 that a great deal of properties of graphene
can be understood in terms of noninteracting linear dispers-
ing Dirac quasiparticles. A particular attention focuses on
ballistic transport. To identify the elusive long-range Cou-
lomb interaction we study here shot noise, which is a funda-
mental nonequilibrium quantity.

Conductivity and shot noise Sn have been experimentally
measured in graphene.3–5 The conductivity for a wide
graphene ribbon �the width of the ribbon exceeds the its
length: W�L� was predicted6–8 to exhibit a minimum �min
at the Dirac degeneracy point while the Fano factor
F=Sn / �2e�minV� had a maximum close to 1/3 �V is the volt-
age�. The conductivity near the neutrality point is attributed
to the fact that the current is mediated by evanescent rather
than propagating modes. The transport by evanescent chan-
nel is suppressed by a factor exp�−kyL� �here ky is the mo-
mentum in the width W direction�. However, in the case
W�L the exponent is actually small �kyL�1� for many
channels, resulting in an universal minimal value for conduc-
tivity at the Dirac point.

The minimum conductivity at the graphene Dirac point
can be reached in clean disorder-free graphene. To achieve a
such regime may be a problem even for ultraclean high mo-
bility suspended graphene9 with a possibility of inhomog-
enous charge landscape10 due to charged impurities. The
measurements1,9 result in a conductance near neutrality point
larger than theoretical values while other data5 do obtain
�min. The origin of this discrepancy is unclear at present.

The Fano factor has been analyzed theoretically in a num-
ber of works8,11,12 relying on the Landauer approach using a
distribution of transmission eigenvalues; this approach is
limited to noninteracting systems. At low temperatures a uni-
versal minimum conductivity is found �min= �4 /��e2 /h as
well as a universal Fano factor F=S /2eI=1 /3. Interestingly,
the F=1 /3 result is also known in diffusive metals.

The Landauer approach is difficult to generalize when
electron-electron interactions are present. Here we apply the
kinetic equation method, which is based on the Keldysh
technique. This method is an alternative that permits to
handle the Coulomb interaction near the Dirac point. A sec-

ond advantage of our method is that the energy distribution
function can be readily identified. We address zero-frequency
shot noise; however, at low � a frequency dependence of the
shot noise will be included through the Coulomb coupling
renormalization.

Our results can be tested by two specific experiments: first
is the probe of local energy distribution as function of the
distance R from one of the electrodes, as done, e.g., in dis-
ordered wires.13 We predict that the distribution has two
steps and it interpolates linearly with R between the Fermi
distributions with voltages 0, V of the two electrodes, respec-
tively. A second experiment tests the presence of the
Coulomb coupling g by looking at the conductivity or at the
shot noise at finite frequency �. The correction to the noise
varies �Eq. �22� below� as gr�1 / ln���, where gr is the
renormalized14,15 interaction at finite �.

The paper is organized as follow. In Sec. II we introduce
the Keldysh action of the system and present the formula of
noise as a variation in the partition function with respect to
the quantum components of the vector potential. In Sec. III
we consider the noninteracting ballistic graphene near the
Dirac neutrality point. For this purpose we develop an ap-
proach based on a quasiclassical approximation: by gradient
expansion we obtain the kinetic equation for the nonequilib-
rium distribution function. This kinetic equation is a diffu-
sion type similar to the one which describes one-dimensional
dirty wires. In Sec. IV we consider the impact of long-range
Coulomb interaction and present the results for conductance
and shot-noise power. The main calculations which are re-
lated to this section are given by Appendices A and B.

II. KELDYSH ACTION

We use the standard form for the Hamiltonian that de-
scribes graphene, being equivalent to QED in 2+1
dimension2,16

H = �
�

�̄��i�x	vF��x +
ie

	c
Āx	 + i�y	vF�y
��. �1�

Here �� are four component spinors corresponding to two
inequivalent Dirac points and to two atoms in the unit cell, �

is a spin index, and Āx is the x component of the vector
potential. The Dirac matrices satisfy the standard algebra
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��
 ,���=2g
� with the explicit representation16

�0 = �0 I

I 0
	, �� = � 0 − �

� 0
	 ,

where �� are Pauli matrices.
We write the corresponding action in the Keldysh rotated

form. We consider the multichannel limit when the width W
of the graphene layer is bigger than its length L, i.e., the
aspect ratio is W /L�1. This allows us to replace the sum-
mation over channels by integration over momentum. The
graphene layer occupies the space 0�x�L, and we consider
the fluctuations of the total current �integrated over W�,
therefore only the x component of the electromagnetic field
is needed. Thus, the total action as a function of the vector
potential �its classic and quantum components� acquires a
form S�A�=S0�A�+Sint,

S0�A� = �
�

 d2xdt�̄��Ĝ�

−1 −
evF

c
�xÂx	��, �2�

where Âx=Ax
0+
xAx
q; Ax and Ax

q are the classical and quan-
tum components of the vector potential, respectively.17 Here

x is a Pauli matrix and 
0 is the unit matrix, both act in the
Keldysh space, and �� becomes an eight component spinor
including the Keldysh indices. The Green’s function �GF�
has a form

G� = �G�
R G�

K

0 G�
A 	 �3�

with each entry as a matrix in Dirac space. The classical field
Ax is included in G−1, hence

�G�
R�−1�A� = i�0	�t + i�x	vF��x +

ie

	c
Ax	 + i�y	vF�y .

�4�

The unscreened long-range Coulomb interacting is given
by the part of the action which in the rotated Keldysh basic
acquires a form �we set vF=	=1�

Sint =
g

2 �
�,��


 d2xd2x�dt��̄��xt��0
0���xt��

�
1

�x − x��
��̄���x�t��0
x����x�t�� . �5�

To first order in the interaction the partition function

Z�A�=�D��̄��exp�iS�A�� becomes Z�A�=Z0�A��1+ i�Sint
� �A��, where Z0�A� corresponds to the action S0�A�.

The current-current correlation function can be obtained
by taking the second derivative of the source-dependent par-
tition function with respect to the quantum component of the
vector potential

Sn�t,t�� =
 dR

2L

 d2r� �2 ln Z�A�

�Ax
q�xt��Ax

q�x�t��
�

Aq→0

, �6�

here R= �x+x�� /2 and r=x−x�. The leads serve as reservoirs
of equilibrium electrons and we take two arbitrary sections

x , x� of the graphene area. A similar approach was under-
taken for calculation of the shot noise in dirty wires.18

III. NONINTERACTING BALLISTIC GRAPHENE

In this case the noise power acquires the form

Sn0�t,t��

= �
e2

2 �
�

 dR

L

 drTr�G��xtx�t���x
xG��x�t�xt��x
x� ,

�7�

where �=W /L is the aspect ratio. In Eq. �7� we perform the
trace in the Keldysh space

Sn0�t,t�� = �
e2

2 �
�

 dR

L

 drTr�G�

R�xtx�t���xG�
A�x�t�xt�

+ G�
A�xtx�t���xG�

R�x�t�xt�

+ G�
K�xtx�t���xG�

K�x�t�xt���x. �8�

This involves Keldysh Green’s function which has the stan-
dard parametrization

GK = GRF̄ − F̄GA �9�

and satisfies Dyson’s equation. The matrix function F̄ is the
nonequilibrium distribution function.17 In equilibrium �V
=0� the Fourier transform of this function is f0���
=tanh�� /2T� �for fermions�. For graphene with the Dirac

hamiltonian, F̄ is block-diagonal matrix with the two blocks

F̄− and F̄+, each a 2�2 matrix. However, the diagonal ele-
ments are dominant at the Dirac point since the off-diagonal
elements are proportional to the energy deviation from the
degeneracy point, i.e., vanish at the Dirac point. For the bal-
listic transport regime Dyson’s equation is reduced to an

equation for the matrix function F̄ which further can be
transformed by performing gradient expansion into a kinetic
equation. In the clean limit we have collisioness limit for this
kinetic equation

F̄�GA�−1�A� − �GR�−1�A�F̄ = 0. �10�

The vector potential Ax can be eliminated from this equa-
tion by a gauge transformation

F̄�xt,x�t�� = U�xt�F�xt,x�t��U†�x�t�� , �11�

where U�xt�=exp�ie�0
xdx�Ax�x�t�� and the block entries for F

are then F− and F+. However, the boundary conditions for
F�xt ,x�t�� will be modified to include the phase factor.18 By
a standard procedure19 we obtain the first kinetic matrix
equation
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��−
i

2

�

�

+ �	F− + � i

2

�

�R
+ px	F−�x + pyF−�y


− �� i

2

�

�

+ �	F+ + �x�−

i

2

�

�R
+ px	F+ + py�yF+
 = 0.

�12�

Here 
= �t+ t�� /2 and Fourier transform on the differences
x−x�, t− t� has introduced energy and momentum variables
� , px , py. The second equation follows from Eq. �12� by
replacing F−,+→F+,− and �x ,�y→−�x ,−�y.

We can solve the kinetic equations independently for the
F� block functions. It is easy to recover the relation F−���
=F+�−��. Remarkably, we obtain a simple equation for diag-
onal function Fd= �F−

11+F−
22� /2 which is, as we mentioned,

of principal importance for noise calculation near degenerate
Dirac point ��→0�,

d2Fd

dR2 + k2Fd = 0, �13�

where k=2��1+ py
2 / �px

2−�2�. Recalling that the boundary
conditions for F include the phase factor we have at the
boundaries

Fd�R = 0,tt�� = f0�t − t�� ,

Fd�R = L,t,t�� = f0�t − t��exp�− i��t� + i��t��� , �14�

where the Fourier transform of f0�t− t�� is f0��� and the
phase ��t�=�0

Ldx�Ax�x�t�. For the constant applied bias V we
can write Fd�R , t , t��=Fd�R , t− t��. Focusing on the Dirac

point, Eq. �13� is reduced to
d2Fd

dR2 =0. The solution of this
equation is

Fd�R,t,t��
f0�t − t��

= 1 −
R

L
+

R

L
exp�− i��t� + i��t��� �15�

or in Fourier transform

Fd�R,�� = �1 −
R

L
	 f0��� +

R

L
f0�� − eV� . �16�

This two-step distribution can be tested experimentally at
intermediate positions 0�R�L.

In the next step we apply the transformation �Eq. �11�� to
the each GF in the formula for the noise power �Eq. �7��, use
representation �Eq. �9�� and notice that the energy integration
over the product of GF of types GAGA or GRGR gives a zero
result. The traces of retarded and advanced GF in the for-
mula for noise are independent of R. Therefore, we can per-
form a direct integration in Eq. �7�. The zero-frequency noise
becomes

Sn0 = �
 d������1 − f0
2��� +

1

3
�2f0

2��� − f0
2�� − eV�

− f0���f0�� − eV��� , �17�

where we define

���� =
4e2

2 �
�

 d2p

�2��3 tr�Im G�
R�p���x Im G�

R�p���x� .

�18�

The retarded GF has a form

G�
R�p�� =

�� + i���0 − � · p

�� + i��2 − p2 ,

hence near the Dirac point Im G�
R�p����−�0��p2+�2�−1 and

we get �in standard units� ����=�min.
Let us consider two limits of Eq. �17�, the first is the

equilibrium noise T�eV→0,

Sn0 = �
 d������1 − f0
2���� = 4T��min. �19�

The shot noise corresponds to the limit V�T→0,

Sn0 =
�

3

 d�����f0����f0��� − f0�� − eV�� . �20�

Completing the integration we get Sn0=2e�V���min /3, hence
the Fano factor is F=1 /3.

IV. COULOMB INTERACTION

The first-order contribution to the noise due to Coulomb
interaction �Eq. �5�� is presented by two topologically differ-
ent sets of diagrams: one �Fig. 1�a�� is the self-energy con-
tribution and the other �Fig. 1�b�� is the vertex type diagram.
We write them in terms of matrix GF’s �in Dirac and
Keldysh space�.

The detail calculations of these diagram are given in Ap-
pendix A. Here we present the result. In the case of equilib-
rium noise Coulomb contribution is

Sg = 0.76�T�mingr.

We note that this value of noise comes out of the nondiver-
gent part of vertex diagram �Fig. 1�b�� while logarithmic
divergences in both self-energy and vertex diagrams cancel.

Here we introduce the Coulomb renormalized coupling gr
that defines the interaction contribution to the noise. It is
known to decrease as a function of frequency and flow to
zero14,15 in the limit �→0, i.e., gr=8� / ln�� /��, where � is

a) b)

FIG. 1. A set of diagrams describing the first-order corrections
to the noise. The dotted lines represents the current vertex, the solid
lines stand for retarded or advanced Green’s functions, the solid
lines with a triangle represent Keldysh functions, and the dashed
line refers to the Coulomb interaction. An additional set of diagrams
involves only one Keldysh and three retarded or advanced Green’s
functions.
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an ultraviolet cutoff. This � dependence can be probed ex-
perimentally to identify the effect of Coulomb interactions.

For finite frequency �, however, there are additional dia-
grams �like one showed in Fig. 2�, which connect two elec-
tron loops by an interaction line, in analogy with the dirty
wire case.20 In Appendix B we show that the shot noise
contribution of this diagram for low frequency and ��q is
proportional the small transmitted momentum q, i.e., van-
ishes as q→0. Therefore, we can neglect the diagrams with
two electron loops.

The renormalized gr is finite at �=0 if weak disorder
generated by ripples is present. An attractive line of fix
points appears then in the flow diagram14,15 leading to a finite
term in the interacting part of the noise even at �=0; how-
ever, other disorder corrections to the noise may arise, which
are not addressed here.

Next we consider the implication of Coulomb interaction
in graphene on the zero-frequency shot noise, i.e., V�T. We
take the limit T→0 and study the case of small voltages �we
keep only terms linear in V�. We substitute the representation
�Eq. �9�� for Keldysh GF and the solution �15� into Eqs. �A3�
and �A4�. We find a common factor for both the self-energy
and for the vertex part of the noise, which at T→0 coincides
with the term in the square brackets of Eq. �17� �we note that
an integration which involves only one Keldysh Green’s
function results in Fd→1 at T→0�. This factor replaces the
value 1− f0

2 in the expressions for I2�p� �Eq. �A6�� and in
J1�q� �Eq. �A7���. Thus in standard units we have

Sg = �
2e�V�

3
0.19�mingr. �21�

To find the Fano factor we extract from the equilibrium
noise the conductivity and by this calculate the Poissonian
noise: SP=2eI=2e�V���min�1+0.19gr�. Comparing with the
expression for the shot noise

S = Sn0 + Sg = �
2e�V�

3
�min�1 + 0.19gr� , �22�

we find F=S /SP=1 /3. Thus the unscreened Coulomb inter-
action precisely cancels and the Fano factor is independent
of g.

The value of Fano factor and its independence on interac-
tion �at the first order� is in striking resemblance with analo-
gous behavior in dirty wires21 when the limit of large inelas-

tic length is considered. This similarity between clean and
dirty systems is due to evanescent modes which define the
current-current correlations in pure graphene at the Dirac
point. The diffusive type equation for distribution function is
common to graphene and to dirty wires. This distribution
function preserves the Fano factor to the first order in gr. We
remark that in other cases F does depend on the interaction
to first order, e.g., in the interacting spinless resonance model
and in the Kondo problem.22 The Fano factor is also changed
by strong interaction �in the so-called hot-electron limit� in
dirty wires with a short relaxation length. However, this case
is described by a quasiequilibrium distribution function and
is beyond the applicability of perturbation theory.20 In the
case of ballistic graphene the hot-electron limit is unlikely
since the interaction flows to small value at small �.

A few technical remarks are in order, related to the nu-
merical coefficient of the coupling g. The exact value of this
coefficient depends on the order in which � and the finite
inverse lifetime � are taken to zero. We take the dc limit �
→0 while keeping ��0 �see discussion in Refs. 11 and 12�.
The factor �1− f0

2���� in the relevant integrals at T→0 sup-
ports such a choice. For the self-energy diagram we chose
hard cutoff which restricts the fermion energy to the Dirac
point.15 In works that use the Kubo formula for the conduc-
tivity an additional regularization procedure for the self-
energy �Fig. 1�a�� is necessary, a procedure that is a subject
of debate.15,23–25 These differences may cause our numerical
coefficient 0.19 to deviate from that of Ref. 24 while being
closer, though bigger, than the result 0.081 of Ref. 15.

V. CONCLUSION

We apply the standard Keldysh technique and kinetic
equation approach to calculate the shot-noise power of clean
graphene at the Dirac point for large aspect ratio W�L. Con-
sidering, e.g., a sample5 with W /L=24 and L=200 nm, the
limitation of being at the vicinity of the Dirac point implies
that V ,� ,T�vF /L�20 meV. We suggest that tunneling ex-
periments, as done in dirty wires,13 can be done in this volt-
age range and can test the linear interpolation of Eq. �16�,
i.e., a position dependence of a two-step energy distribution
function. We have also found an interaction correction for
the shot noise, varying as g�1 / ln��� �Eq. �22��. This cou-
lomb effect may be detected by the frequency dependence of
either the conductivity or the shot noise. We note that vF /L is
the ballistic flight time across the system, hence at �
�vF /L the noninteracting term is expected to be �
independent.11 Therefore an observed � dependence in this
range can identify the elusive Coulomb interaction. Since the
same correction appears in the conductance and in the shot
noise the Fano factor remains robust to interactions and per-
sists being equal to 1/3.
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FIG. 2. The two loops diagram which describes the first-order
corrections to the noise. The lines are the same as in Fig. 1. The
additional diagrams of this kind are those which replace the loop
with two Keldysh Green’s function �like left one in this figure� by
retarded and advanced Green’s functions.
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APPENDIX A

In this appendix we evaluate noise diagrams in Fig. 1. The self-energy diagrams can be written explicitly as

S��t,t�� =
e2ig�

2L
�
�

 Tr�G��zt1xt��x
xG��xtx�t���x
xG��x�t�yt1�

1

�z − y�
��0G��yt1zt1��0
x + �0
xG��yt1zt1��0�� �A1�

and the vertex part acquires a form

Sv�t,t�� =
e2ig�

2L
�
�

 Tr��0G��yt1x�t���x
xG��x�t�zt1��0

1

�z − y�
�
xG��zt1xt��x
xG��xtyt1� + G��zt1xt��x
xG��xtyt1�
x�� ,

�A2�

where symbol � denotes multiple integrations


 =
 dRd2rd2yd2zdt1.

The gauge transformation �Eq. �11�� yields a V�t− t�� de-
pendence for all Green’s functions. We simplify the noise by
adding or subtracting expressions such as the energy inte-
grals of the products of GF: GAGA or GRGR �which is zero�.
Thus for the zero-frequency contributions to the noise power
�at �→0� we get

Sv =
2e2ig�

L
tr��0�GK�xG

R + GA�xG
K�D̂�0

��GK�xG
K − G−�xG−�� , �A3�

S� =
e2ig�

L
tr��GA�x�GK�xG

K − G−�xG−�

+ �GK�xG
K − G−�xG−��xG

R�D̂Gs
K� . �A4�

Here tr includes all summation in Dirac space and integra-
tions on space and time variables. We also denote G−=GR

−GA and index s refers to the relation Gs
K=�0GK�0. Also we

use notation D̂=1 / �z−y� and have dropped a term propor-
tional to Gs

R+Gs
A in the self-energy contribution which is

zero by energy integration.
The interaction part to the equilibrium noise Sg=S�+Sv

can be calculated by applying the fluctuation dissipation
theorem. Thus we have

Sg = ie2g�
 d2p

2�

d2q

�2��2

tr�I2�p�I1�q� + 2J2�p�J1�q��
�p − q�

,

here the trace is taken over Dirac matrices. The functions
Ji�p� and Ii�p� include energy integration

I1�q� =
 dq0

2�
f0�q0�Gs−�qq0� , �A5�

I2�p� = −
 dp0

2�
�1 − f0

2�p0���G��xG−�xG− + C−�xG−�xG��pp0
,

�A6�

J1�q� = − �0
 dq0

2�
�1 − f0

2�q0���G−�xG−�q�q0
, �A7�

J2�p� = �0
 dp0

2�
f0�p0��G−�xG

R + GA�xG−� , �A8�

here G�=ReGR.
A direct energy integration yields

I1�q� = − if0�q�� · q/q , �A9�

I2�p� = 16�T�2�p�� · p/p2, �A10�

J1�p� = − 8�T�0�x�
2�p� , �A11�

J2�q� =
if0�q�
2q3 �0�� · q�x� · q + q2�x� , �A12�

where ��p�=� / ����2+ p2�� and q , p= �q� , �p�. Integrating
over momenta in the formula for noise and collecting all
contributions we note that logarithmic divergences are ex-
actly compensated in the sum of two types of diagrams. Thus
the Coulomb contribution to the equilibrium �V=0� noise
becomes Sg /4=0.19�T�ming. The prefactor 0.19 came
from numerical integration of the second term in Sg and
corresponds to the nondivergent part of vertex diagram
�Fig. 1�b��.

APPENDIX B

In this section we estimate two loop diagrams shown in
Fig. 2. The summations over the Keldysh indices leads actu-
ally to the two sets of such diagrams: one is proportional to
the sum of retarded and advanced Coulomb Green’s func-
tions while the other is proportional to Keldysh Coulomb
Green’s function. As our principal approximation we con-
sider unscreened coulomb interaction to first order in g while
�-dependent parts of Green’s functions include random-
phase approximation polarization and, therefore, are a higher
order in g. Thus, the set of diagrams that involves the
Keldysh Coulomb Green’s function is the second order in
coupling constant, i.e., beyond the first order considered
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here. As to the former diagrams, the relevant contribution
may be expected in the first order in g. However, it simple
show, and we proved this by direct calculations, that this set
of diagram is proportional the small transmitted momentum
q �in our case q→0� and does not contribute to the noise
power. Indeed, in the limit of unscreened coulomb interac-
tion �DR+DA�=1 / �x� −y�� the contribution to the noise which
originates from this set of diagrams can be written as

Sloop�xt,x�t�� =
e2ig�

2L

 dy�dz�dt1P�xtyt1�

1

�z − y�
Q�zt1x�t�� ,

where Q�zt1x�t�� represents the current response to external
field and P�xtyt1� is the current-density correlator of nonin-
teracting electrons,

Q�zt1x�t�� = �
�

TrG��zt1x�t���x
xG��x�t�zt1��0,

P�xtyt1� = �
�

TrG��xtyt1��0
xG��yt1xt��x
x.

In equilibrium for Sloop we have

Sloop�q� → 0,�� � ig�min�P�q���
1

�q� �
Q�q��� ,

where we also introduced the Fourier transform for all func-
tions. At zero temperature T=0 the current-density correlator
P�q��� and the function Q�q��� can be easily calculated. In
the limit of low frequency and ��q we obtain

P�q��� =
qx

�1 − q2/�2
� qx,

Q�q��� �
− 4iqx

��
P0, �B1�

here q= �q� � and P0 is the high-momentum cutoff. Thus the
shot-noise contribution of this diagram for low frequency
and ��q is proportional the small transmitted momentum q,
i.e., vanishes as q→0.
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